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I. INTRODUCTION

Three commonly (but not consistently) used terms in the control

literature are "performance measure", "performance index", and

"performance criterion". The reader should note that by "performance

measure" we mean a functional that assigns a nonnegative real number to

each sample run of the control system. Thus, for stochastic systems

performance measures are random variables.

We call statistical quantities associated with performance measures

for the sake of optimization "performance indices". In this paper

optimization consists of minimizing weighted sums of performance indices,

and "performance criterion" is the term we use to refer to the objective

of achieving such a minimum.

The research reported in this paper is the culmination of

approximately a decade of effort orininated by Sain [ 6], [ 7], [ 8]

continued by Liberty [ 4] and Sain and Liberty [10], and completed by

Liberty and Hartwig [ 5] and Hartwig [ 2]. In the sequel we present

new analytical results in Linear-Quadratic-Gaussian (LQG) control

theory which reflect a design philosophy that significantly departs

from traditional lines of thought.

The objectives of the overall research effort were two fold: first,

to solve LQG control problems with broader criteria than minimum average

performance; and second, to develop broad statistical performance analysis

techniques for LQG systems.

Original work directed at the first objective resulted in the

solution of the open-loop minimum-variance problem [ 7], [ 9], while

that directed at the second resulted in the development of various

partial and complete statistical descriptions of performance [ 4], [ 6],
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[ 8], [10] with the complete solution of the performance analysis

problem appearing in [ 5].

These performance analysis results are utilized in section V to

demonstrate the characteristics of an LQG control system designed

according to criteria developed herein.

Although solution of the open loop minimum variance control

problem provided new insight into the LQG theory, it had little practical

impact on LQG design. This, of course, was simply due to its inherent

lack of feedback structure.

With this history in mind and with insight gained from the work

reported in [ 5] we now set out to develop a general LQG design philosophy

and an accompanying design procedure.

The following objectives form thtframework of our development:

i. We require that the performance criteria we decide /
upon yield linear control laws. This is desirable
for implementation considerations and will
guarantee that the final system will still lie in -

the LQG class thus assuring the applicability of
the design performance analysis results of [ 5].

ii. We demand physically realizable controllers. (It '

may seem silly to even state this objective, but"A
actually one must carefully guard against non- ...o
causality that can artificially arise in D?10  CRq
optimization.) . T

iii. We do not want to sacrifice any more computational '74-t'7c ° d

tractability than necessary for the sake of /
achieving more general results. -

iv. We want to select performance criteria that will l-_Aa On/
allow the designer to affect the probability abiZ.bl/
distribution of his performance measure(s) in ,u~t , CO 18"e
a desirable way. (For the purpose of performance . 0l /op
analysis there may be more than one performance
measure for each control system.)

In section II we state several well known facts from the LQG_ /
theory. For the sake of conciseness we heavily reference the

€.
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tutorial paper by Tse [11] and use his notation as much as possible.

This section also contains the definition of quadratic performance

measures to be utilized in the control system design procedure.

Section III contains the development of a complete statistical

description of performance in terms of an "accessible state". In

addition, design performance indices are defined in this section.

In section IV we state the new LQG performance criteria and

solve a general problem within this class. Section V contains a

numerical example of design according to the new criteria.



II. SYSTEM MODELS AND PERFORMANCE MEASURES

Let Rn denote the n-fold Cartesian product of the real line, and

let J denote the real line interval [to , tf]. The linear system to be

controlled is described by

dx(t) A(t)x(t) + B(t)u(t) + 9(t), (1)

dt

and

z(t) = C(t)x(t) + e(t), tel , (2)

where the state x(t) e R n  the control action u(t) e Rm , and the

observation process z(t) e Rr. The initial condition for (1), x(t ),

is assumed to be Gaussian with mean

x= Ejx(t )} (3)

and covariance

= E{[x(to)-xoIx T (to)-x ]T (4)

where (T) denotes matrix transposition. The state noise process, &(t)

is zero-mean Gaussian-white with covariance kernel

E{ (t)gT(T)) = E(t)6(t-T), t,TEJ (5)

where =(t) is symmetric and positive semi-definite on J. The

measurement noise process, e(t), is zero-mean Gaussian-white with

4
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covariance kernel

E{e(t)e T(1) = O(t)6(t-T), t,TEJ (6)

where e(t) is symmetric and positive definite on j. For convenience we

assume that C(t), e(t), and x(t ) are all uncorrelated. That is,

E{E(t)e T(-r)} = 0, t,t J (7)

E{[x(t0)-x 0  T(t) = 0, tel, (8)

and

E{[x(t0)-x0 3 (t1 = 0, te. (9)

The control action, u(t), is assumed to be a causal function of the

observation process. That is,

u(t) = p(t,z(T); TE[t O, t]), (10)

where O(t,) satisfies the Lipschitz condition in [Ill]. All matrix

functions including the mapping p(t,-) are assumed to be smooth enough

to guarantee mean square continuity of the x-process on J. Consequently

x is a finite energy process on J.

We define three measures of system performance. The first, hence-

forth referred to as the design performance measure, is given by

j XT ~ tfTT
= xT(tf)Sx(tf) + f [xT(t)Q(t)x(t) + uT(t)R(t)u(t)]dt '  (11)

to

where the terminal penalty weighting, S, is symmetric and positive
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semi-definite as is the weighting Q(t) on J. The weighting R(t) is

symmetric and positive definite on J. We also assume that Q(t) and

R(t) are continuous on J. The performance measure, J, describes a-priori

design specifications involving the relative importance of state

regulation and control effort.

The remaining two measures of system performance will be referred

to as design-analysis performance measures and are defined by

tf

Jx = f xT(t)X(t)x(t)dt, (12)
to0

and

Ju = f uT(t)U(t)u(t)dt. (13)
to

The weighting matrices X(t) and U(t) are assumed to be symmetric and

positive semi-definite on J. ConceptuallyJ x measures the state

regulating quality of a given designand Ju measures the corresponding

control effort. The weightings X(t) and U(t) are chosen by the

designer to select and/or weight particular components of x or u for

analysis. Performance analysis as demonstrated in section V consists

of obtaining probabilistic or statistical descriptions of Jx and J u

after a design is achieved.

Quantities of special interest in our development are the

conditional mean and conditional covariance of x(t) given by,

x(t) = E{x(t)IFt}, teJ, (14)

and

T ^T
K (t,T) =E(x(t)-x(t)][xT)-xT(T)]IF}ot, (15)

a = tVT, t, TOJ
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where Ft is the sigma algebra induced by the measurements {x(T),

T E [t , t] }. When t = tf we will write F without a subscript. Define

the single argument covariance z(t) as

E(t)A Kx(t, t), te3 - (16)

It is well known that the conditional covariance kernel is nonrandom

[11], and that x evolves according to

d x(t) = A(t)x(t) + B(t)u(t) + W(t)v(t), t j (17)

where

x(to ) = xo , (18)

W(t) = Z(t)cT(t)& 1" (t), teJ, (19)

and z(t) satisfies

d -(t) = A(t)z(t) + z(t)A (t) + =_(t)
TTT

S.(t)cT(t) - (t)C(t)E(t), tei, (20)

with

Z(to) = Eo" (21)

The control action, u(t), is as in (10) and the "innovations process",

v(t), defined by

v(t) A z(t) - C(t)x(t), t.J; (22)

is zero-mean Gaussian-white with covariance kernel
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E{v(t)v T(T)} = G(t)6(t-f), t,TEJ (23)

The process, x, will be an "accessible state" in our formulation and

the x-process model in (17) alone plays the key dynamical role in the

determination of u(t). However, both (17) and (1) are utilized in

post-design performance analysis.

___________I



III. PERFORMANCE STATISTICS AND PERFORMANCE INDICES

The process generated by (1) is a nonzero-mean Gauss-Markov

process which we expand in an orthonormal series

x(t) - xioi(t), tEJ (24)
i =1

where the xi are conditionally Gaussian scalar random variables

given by
, tfT

= xT(tf)soi(tf) + f x (t)Q(t)¢i(t)dt (25)
to

with conditional means

= Ex T(tf)IF}Soi(tf)

t f
+ f E{xT(t)lFt}Q(t)0i(t)dt, (26)

to

In addition, the xi are assumed to be conditionally uncorrelated,

that is,

E([x i - mi][x j - mj]F} = Xiij Vij. (27)

The nonrandom vector valued functions, i(t), are chosen to satisfy

the orthonormality condition,

T tf

j(tfSj(t 'f) + fOT(t)Q(t).j(t)dt = Vij. (28)
to

Under the -,clmptir we have made on the x-process, J is finite

with probability one; see Doo [1]. It follows from Parseval's Theorem

9
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that

tf

S x 2 + f uT (t)R(t)u(t)dt, (29)i=l to

where convergence is with probability one; see Kolmogorov and Fomin [3].

Since the xi are conditionally Gaussian and conditionally un-

correlated, they are conditionally independent as are their squares.

The conditional characteristic function of each x term in (29) is of

the noncentral chi-square type given by,

-1/2 2 -l
C x2 IF = (I - 2wx) exp[jmi(l - 2Jwx) ). (30)

i

The conditional characteristic function of J follows as,

-1/2 tf
CJIF(Jw) = [il (1 - 2jwx i) ] exp LJw f uT(t)R(t)u(t)dt

t .2

+ Ijwm(l - 2 jwxi)'l]. (31)

The second conditional characteristic function, TjIF(jw), is defined

as the natural logarithm of C jF(jw), that is,

T JF(jw) = ln[CJIF(jw)]. (32)

The MacLaurin series representation of TJIF(jw) is given by

TJIF(jw) = i iI _. (33)

where the coefficients kiF are called conditional cumulants. Utilizing

(30), it can be easily shown that the first conditional cumulant of

J is given by



0 0 2 tf TKlIF i i uT(t)R(t)u(t)dt, (34)

lF=  i=l i

while the remaining conditional cumulants are of the form

k-l- k k-l 2 k-l
K kIF (k-l)! 2 + 2 mx k > 1. (35)

i=l i=l

It is easily shown that

KlIF = E{JjF}, (36)

K21F E{(J - E{JIFI)21F}, (37)

and that in general the conditional noncentral moments, PkJF' are related

to the conditional cumulants by

k
RIIF = j:O ()vk-jI#j+ljF" (38)

The noncentral moments, Pk' are related to the conditional noncentral

moments by

P E{'=UkFlF . . (39)

The relationship between the cumulants, Kk' and the conditional

cumulants can be determined by first noting that the noncentral

moments and the cumulants are related in a manner identical to that for

the conditional statistics, that is,

k+l k kUkl =0 j
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It then follows that

d= E{IjF }  (41)

r-2 
= E{r21F + Var{K.IF) (42)

and in general

K k = E{ klFl + (statistics of lower order conditional (43)
cumulantsl

The next step is to express (34) and (35) in terms of the non-

random conditional covariance of the x-process. This cannot be done

explicitly but requires the definition of the "iterated kernels"

(1)
K- (t,T) A K (t,T) (44)

x-

and

(k) (k-l) tf (k-l)
K (t,T) A K (t, tf)S K (tf,T)+ f K-(t,aF)Q(a)K (a,T)da , k>1. (45)

to

it can be inductively shown that

(k ) COT
KXj (t,T) = i x.Z(T ) (46)

The expression, in (34) and (35) can be written as
i=l

k = Tr[S (k) tf (k)
xi= x (tf, tf) + f Q(t)K ! (t, t)dt] (47)
I to

where Tr[.] denotes the trace of the enclosed matrix. The expression,

S2k-1
mX i , in (35) follows as

1=I



2 k-i = -T (k-1)
imi X X(tf)S K (tf, tf)Sx(tf) 13

tf (k-1)

+ XT(tf)S foK (tf, t)Q(t)x(t)dt

tf (k-I)

+ f x (t)Q(t)K; (t, tf)dtSx(tf)
to

tf tf^ (k-1)

+ f f x (t)Q(t)K; (t,t)Q(T)k(t)dTdt, k > 1, (48)
to to

For the case, k 1 , it is obvious that

tfm= xT(tf)Sx(t) + f xT(t)Q(t)x(t)at .  (49)

Recalling the objectives listed in section I we now examine the

statistical expressions in (43), (47), (48) and (49).

i. Note that (48) and (49) are quadratic in x.

ii. Note that (47) does not depend on u.

iii. Note from (43) that the value of every statistic
of J is affected by the expected value of the
corresponding conditional cumulant.

Thus we choose the expected value of the conditional cumulants of J as

performance indices. Optimization performed over these objects will

yield linear control laws and will provide the design engineer with a

mechanism for affecting the probability distribution of J in a broad

statistical sense.



IV. NEW PERFORMANCE CRITERIA FOR LQG CONTROL

We now select a class of performance criteria. In particular, we

choose to minimize the expected value of a weighted sum of conditional

cumulants of J. This minimization is to be done over the class of

admissible control laws described in [11]. Thus,our criterion is

N
min E{ Zci.. F}, u admissible, N finite,
u

where the i are chosen by the designer to reflect the relative importance

of affecting a particular statistic of J.

This criterion will preserve linearity while adding statistical

breadth to the LQG design procedure. It should be noted that the classical

minimum-mean LQG contro-I problem is a special case of the new class

of problems.

The objectives that we must yet meet are those of physical realizability

and computational tractability. To achieve these we define a class of

dynamical variables all driven by x. The resulting dynamical systems

become part of the feedback control structure. These variables are given by

t (k)
nk(t) A f K- (t,r)Q(T)x(T)dT, t e J. (50)

to

This variable arises naturally in each conditional cumulant expression

by making the observation that the last term in (48) contains a symmetric

(in argument) integrand. Thus

-ttf (k-l) tf t T (k-i)
f JM(tQ(tNK (t,T)Q(T)X(T)dTdt= 21f (t)Q(t)K (t,T)Q('r)x(T)dTdt

t to to

tf
2 x(t)Q(t)nkl(t)dt. (51)
to

14
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It follows immediately that

G2 k. -T (k-I)
2 X (tf)Sk (tf,tf)Sx(tf) + 2 x(tf)Snk l(tf)

tf
+2 f T(t)Q(t)nk-(t)dt. (52)

to

At this point we can best illustrate the results by considering

a single problem within the new class. Consider the problem of

minimizing E{Klj, + aK2jF
1
}  Here we wish to decrease the variance of

J at the expense of an increase in the mean of J. Disregarding the

uncontrollable terms, this criterion may be explicitly written as
tf

min E{xT(tf)Sx(tf) + f[T(t)Q(t)(t) + uT(t)R(t)u(t)]dt
u t0

+ 4a x(tf)SE(tf)Sx(tf) + 8acT(tf)Snl(tf)

tf
+ 8a f x (t)Q(t)nl(t)dt}

to

where nl(t) evolves from

d nl(t )  A(t)nl(t) + Z(t)Q(t)x(t), t e J (53)

with

nl(t o ) = 0. (54)

By defining an augmented state vector this criterion may be rewritten as
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T 1 1
x(tf) S + 4cSE(tf)S 4aS x(tf)

mi n E{ [cf
u nI (tf) 4aS 0 n (tf)

+ Ix(t) Qt) 4aQ(t) 3t)
to0-n,~t M_ oa(t) 0 Lnl(t>

+ uT(t)R(t)u(t)dt}

where the augmented state vector evolves from

d- x(t) 1= IA(t) 0 lx(t) + [ 1(t)

+ Htt) (t), tJ (5)

with

X F.. X1 (56)
nl(t O ) 0

However,the solution of an accessible state problem with this structure

is well known [11] and is given by

u(t) = -R(tIBT(t) O]M(t) [Mlt 3 tCj (57)

where M(t) is a solution of
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dM(t) :-M(t) AI )[A(t) 0 1
dE(t)Q(t) At)

- [ATt Q(t)E(t) M(t)

[0 AT (t)

Q(t) 4aQ(t)]

4(%Q(t) 0

+ M(t) [B(t)R1(t)BT(t) J M(t) , tJ (58)

0 0

with M(tf) : [s+ 4aSE(tf)S 4aS0 (59)

Notice that the resulting feedback structure is linear, dynamical,

and physically realizable. A block diagram of the overall system is

shown in Figure 1, where MU1(t) and M12(t) are the obvious n x n

submatrices of M(t). The next section contains a numerical example

with accompanying performance analysis to illustrate the procedure

and properties of the solution.



V. PERFORMANCE CRITERIA - A NUMERICAL EXAMPLE

Consider a scalar system described by (1) - (9) with

J = [O, I], (60)

A(t) = B(t) = C(t) = xo = l, te[O, 1], (61)

= 0 (62)

=(t) = 0.25, te[O, 1], (63)

and

0(t) = 0.35, tc[O, 1]. (64)

We select (11) as the measure of system performance with

S = 0, (65)

and

Q(t) = R(t) = 1, te[O, 1]. (66)

We will use as our performance criteria,

min E{il IF + aK21F1

The resulting feedback structure for the above system matrices is

given by (57) - (59).

A plot of mean and variance of the performance measure is shown in

Fig. 2. As expected, for an increase in a one observes both an

increase in the mean and a decrease in the variance. However, there is

yet an additional characteristic of these plots which is just as

significant. In the region of small a, a given change in a results

in a relative change in the variance which is greater than the corresponding

18
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relative change in the mean. Hence, for small a one obtains a mean only

slightly larger than the minimum mean, while the resulting variance is

considerably less than the maximum variance occurring at a=0. Of

course, general conclusions cannot be drawn here, but our philosophy

is supported.

In order to provide a more complete statistical description of

system performance, the probability density functions of J for a = 0,

a=0.5, and a = 2.0 are shown in Fig. 3.

For purposes of evaluating state regulation and control effort,

we will now examine the resulting behavior of Jxand. 'u given in (12)

and (13) where we assume that

X(t) = U(t) = 1, tc[O, 1], (67)

Plots of mean and variance of both Jx. and JUare shown, respectively, in

Figs. 4 and 5. An interesting characteristic of these curves is that

for increasing a, both the mean and variance of the state regulation

decrease. One obviously has to pay a price for this good performance,

and this is seen in the control effort where both the mean and variance

increase with increasing a. Figs. 6 and 7 show the probability density

functions of JA* and J~,respectively, for the values a = 0, a= 0.5,

and a= 2.0. The real value of these density curves is that for each

value of a, one can see probabilistically the resulting trade-off

between state regulation and control effort.

In an actual design the design engineer would iterate through the

procedure, varying a, S, Q(t), and R(t) at each iteration as needed,

until desirable performances, J x and J u, are obtained.
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VI. CONCLUSION

The new class of LQG performance criteria developed should enhance

the applicability of the LQG theory. Experimentation with the proposed

design procedure should be carried out. There are details on controllability

and properties of equation solution, etc. that we have chosen not to

address here.

The line of thinking that has led to these results may also prove

to be useful in the estimation area,particularly with regard to the

development of "robust" linear estimators.
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